Friday, October 19, 2012

Angklung Batik yang eksklusif

Di Trade Expo Indonesia 2012 JExpo Kemayoran,tanggal 17-21 Oktober 2012 di Hal A1,dipamer kan angklung batik. Idenya adalah dari menggabungkan Batik sebagai warisan budaya indonesia dengan Angklung yang juga kebanggaan Indonesia.Angklung Batik sangat menarik untuk dijadikan souvenir

Angklung melody setinggi 3,5 Meter

Angklung Melodi Setinggi 3,5 Meter Akan Dimainkan

Wednesday, May 23, 2012

Angklung adalah alat musik yang terbuat dari ruas-ruas bambu, cara memainkannya digoyangkan serta digetarkan oleh tangan, alat musik ini telah lama dikenal di beberapa daerah di Indonesia, terutama di Jawa Barat, Jawa Tengah, Jawa Timur dan Bali. Sejarah Angklung sangat erat kaitannya dengan seni karawitan sebagai media upacara penghubung antara manusia dan Tuhannya, Yang Maha Kuasa. Bukti tertulis penggunaan Angklung tertua yang ditemukan terdapat pada prasasti Cibadak bertahun 952 Saka atau 1031 SM, di daerah Sukabumi, Jawa Barat. Pada prasasti tersebut, diterangkan bahwa Raja Sunda, Sri Jayabuphati, menggunakan seni Angklung dalam upacara keagamaannya. Kita juga dapat menemukan bukti lain dalam buku Nagara Kartagama tahun 1359, yang menerangkan penggunaan Angklung sebagai media hiburan dalam pesta penyambutan kerajaan. Kata Angklung diambil dari cara alat musik tersebut dimainkan. Kata Angklung berasal dari Bahasa Sunda “angkleung-angkleungan” yaitu gerakan pemain Angklung dan suara “klung” yang dihasilkannya. Secara etimologis , Angklung berasal dari kata “angka” yang berarti nada dan “lung” yang berarti pecah. Jadi Angklung merujuk nada yang pecah atau nada yang tidak lengkap. Angklung merupakan alat musik yang berasal dari Jawa Barat. Angklung gubrag di Jasinga, Bogor, adalah salah satu yang masih hidup sejak lebih dari 400 tahun lampau. Kemunculannya berawal dari ritus padi. Angklung diciptakan dan dimainkan untuk memikat Dewi Sri turun ke Bumi agar tanaman padi rakyat tumbuh subur. Dikenal oleh masyarakat sunda sejak masa Kerajaan Sunda, di antaranya sebagai penggugah semangat dalam pertempuran. Fungsi angklung sebagai pemompa semangat rakyat masih terus terasa sampai pada masa penjajahan, itu sebabnya pemerintah Hindia Belanda sempat melarang masyarakat menggunakan angklung, pelarangan itu sempat membuat popularitas angklung menurun dan hanya di mainkan oleh anak- anak pada waktu itu. Asal usul terciptanya musik bambu, seperti angklung berdasarkan pandangan hidup masyarakat Sunda yang agraris dengan sumber kehidupan dari padi (pare) sebagai makanan pokoknya. Hal ini melahirkan mitos kepercayaan terhadap Nyai Sri Phocay sebagai lambang Dewi Padi pemberi kehidupan (hirup-hurip). Perenungan masyarakat Sunda dahulu dalam mengolah pertanian (tatanen) terutama di sawah dan huma telah melahirkan penciptaan syair dan lagu sebagai penghormatan dan persembahan terhadap Nyai Sri Pohaci, serta upaya nyinglar (tolak bala) agar cocok tanam mereka tidak mengundang malapetaka, baik gangguan hama maupun bencana alam lainnya. Syair lagu buhun untuk menghormati Nyi Sri Pohaci tersebut misalnya: Si Oyong-oyong Sawahe si waru doyong Sawahe ujuring eler Sawahe ujuring etan Solasi suling dami Menyan putih pengundang dewa Dewa-dewa widadari Panurunan si patang puluh Selanjutnya lagu-lagu persembahan terhadap Dewi Sri tersebut disertai dengan pengiring bunyi tabuh yang terbuat dari batang-batang bambu yang dikemas sederhana yang kemudian lahirlah struktur alat musik bambu yang kita kenal sekarang bernama angklung. Perkembangan selanjutnya dalam permainan Angklung tradisi disertai pula dengan unsur gerak dan ibing (tari) yang ritmis (ber-wirahma) dengan pola dan aturan=aturan tertentu sesuai dengan kebutuhan upacara penghormatan padi pada waktu mengarak padi ke lumbung (ngampih pare, nginebkeun), juga pada saat-saat mitembeyan, mengawali menanam padi yang di sebagian tempat di Jawa Barat disebut ngaseuk. Dalam perkembangannya, angklung berkembang dan menyebar ke seantero Jawa, lalu ke Kalimantan dan Sumatera. Pada 1908 tercatat sebuah misi kebudayaan dari Indonesia ke Thailand, antara lain ditandai penyerahan angklung, lalu permainan musik bambu ini pun sempat menyebar di sana. Kini, Angklung telah menjadi alat musik internasional. Banyak Negara-negara lain mengembangkan angklung, dikarenakan beragam manfaat yang didapat. Filosofi angklung 5M (mudah, meriah, menarik, mendidik, massal) membuat angklung makin digemari di seluruh penjuru dunia. Pada jaman dahulu kala, instrumen angklung merupakan instrumen yang memiliki fungsi ritual keagamaan. Fungsi utama angklung adalah sebagai media pengundang Dewi Sri (dewi padi/kesuburan) untuk turun ke bumi dan memberikan kesuburan pada musim tanam. Angklung yang dipergunakan berlaraskan tritonik (tiga nada), tetratonik (empat nada) dan pentatonik (5 nada/ dengan bunyi da-mi-na-ti-la). Angklung jenis ini seringkali disebut dengan istilah angklung buhun yang berarti “Angklung tua” yang belum terpengaruhi unsur-unsur dari luar. Hingga saat ini di beberapa desa masih dijumpai beragam kegiatan upacara yang mempergunakan angklung buhun, diantaranya digunakan untuk keperluan : pesta panen, ngaseuk pare, nginebkeun pare, ngampihkeun pare, seren taun, nadran, helaran, turun bumi, sedekah bumi dll. Pada Tahun 1938, Daeng Soetigna, seorang guru Hollandsch Inlandsche School (HIS) di Kabupaten Kuningan, Jawa Barat, melakukan modernisasi alat musik angklung dari alat yang berskala tangga nada pentatonis (tangga nada tradisional) menjadi angklung kompleks yang berskala tangga nada diatonis (tangga nada modern). Angklung ini dapat memainkan lagu-lagu populer, musik nasional, dan lagu Barat maupun musik klasik. Disebut Angklung modern (diatonis) karena nadanadanya disesuaikan dengan skala nada diatonis, yaitu do – re – mi – fa – sol – la – si, dan angklung diatonis ini biasa disebut juga “Angklung Padaeng”, karena jasanya terhadap perkembangan Angklung dan pendidik musik. Angklung Modern (Padaeng) mulai diperkenalkan pada masyarakat internasional di tahun 1946 pada malam hiburan perundingan Linggar Jati. Tahun 1950 dan 1955, Angklung modern pun ditampilkan pada Konferensi Asia Afrika. Kini Angklung Modern (Padaeng) memiliki fungsi tambahan sebagai sarana pendidikan musik, karena Angklung dapat memupuk sifat kerjasama, disiplin, kercermatan, keterampilan dan rasa tanggungjawab. Demikian pula mengenai hal-hal yang merupakan dasar pokok dalam pendidikan musik, seperti membangkitkan perhatian terhadap musik, menghidupkan musik dan mengembangkan musikalitas, melodi, ritme dan harmoni. Atas pemikiran tersebut, maka pemerintah Indonesia melalui Departemen Pendidikan dan Kebudayaan mengeluarkan Surat Keputusan Menteri Pendidikan dan Kebudayaan Republik Indonesia No. 182/1967 tertanggal 23 Agustus 1968 yang menyatakan Angklung sebagai alat pendidikan musik nasional. Sejak tahun 1971, pemerintah Indonesia menjadikan Angklung sebagai sarana dalam program diplomasi budaya. Angklung sejak saat itu menyebar luas ke berbagai negara. Di Korea Selatan, hingga kini tercatat lebih dari 8.000 sekolah memainkan Angklung. Di Argentina, Angklung telah menjadi mata pelajaran intrakurikuler yang menarik bagi siswa, demikian pula di Skotlandia. Sejak tahun 2002, Departemen Luar Negeri Republik Indonesia telah memberikan kesempatan bagi siswa-siswi dari mancanegara untuk belajar dan mengenali Angklung di Indonesia. Kini Angklung tidak hanya menjadi alat musik kebanggan Indonesia, tetapi menjadi media untuk meningkatkan rasa persabatan antar bangsa di dunia. Diposkan oleh rin alat musik

Saturday, August 06, 2011


FOTO: Angklung Modifikasi

Heru Sri Kumoro/KOMPASKesenian angklung yang telah dimodifikasi sehingga bisa dimainkan dengan dihubungkan ke perangkat pemutar musik iPod dipamerkan pada Kridaya 2011 di Jakarta Convention Center, Jakarta
BERITA FOTO

Angklung karya perajin di Yogyakarta ini dijual Rp 88 juta untuk satu set, terdiri dari angklung, iPod sebagai pemutar musik, dan sound system. Angklung modern ini bisa disaksikan selama pameran yang akan berlangsung hingga 7  Agustus.Kesenian angklung yang telah dimodifikasi sehingga bisa dimainkan dengan dihubungkan ke perangkat pemutar musik iPod dipamerkan pada Kridaya 2011 di Jakarta Convention Center, Jakarta, Kamis (4/8/2011).


Wednesday, November 17, 2010

Tunisia "Terbuai" Angklung dan Orkes Bambu

Tunisia - Saung Angklung Udjo dan orkestra bambu arumba dari Bandung, Jawa Barat, pimpinan Taufik Hidayat Udjo tampil memukau di depan sekitar 700 penonton yang memadati La Basilique de Tabarka, di Kota Tabarka, Propinsi Jendouba, Tunisia, akhir pekan. Pejabat Fungsi Pensosbud KBRI Tunis, Sugiri Suparwan, Senin menjelaskan, pementasan di Tabarka termasuk dalam rangkaian perayaan 50 tahun hubungan diplomatik Indonesia-Tunisia, dan Festival International de Tabarka.
Hadir pada acara itu Duta Besar RI untuk Tunisia dan Ny Muhammad Ibnu Said, Sekjen Rassemblement Constitutionnel Democratique (RCD/partai pemerintah) Mohamed El Garyani. "Pementasan Saung Angklung Udjo di berbagai festival rakyat di berbagai kota Tunisia bertujuan untuk lebih mendekatkan Indonesia secara langsung ke masyarakat Tunisia," katanya. Pementasan dibuka dengan musik instrumental membawakan lagu Rintak Rebana karya Dwiki Dharmawan dan dilanjutnya, lagu medley nusantara mulai dari Aceh hingga Papua yang dipandu Lia Laila Sari, instruktur angklung interaktif yang beralih fungsi menjadi penyanyi. Mengenakan kebaya dengan bawahan bermotif batik segera disambut meriah oleh penonton, Lia Laila Sari, berturut-turut menampilkan lagu-lagu "Ya Mustafa", "Peuyeum Bandung" dan "Ya Rayyah."

Penonton dengan antusias ikut menyanyikan Lagu "Ya Mustafa" dan "Ya Rayyah" yang memang akrab di telinga mereka. Lagu "Ya Mustafa" adalah lagu folklor Tunisia tahun 50-60an yang kepopulerannya bahkan sampai ke Indonesia.  "Ya Rayyah" yang aslinya dinyanyikan oleh penyanyi Aljzair, Rachid Taha, juga sangat terkenal di negara-negara Arab dan Eropa. Lagu ini bahkan menjadi soundtrack film Bollywood, Mann, dengan syair yang dirubah ke dalam Bahasa India. Diselingi musik instrumental yang tenang bertajuk "Spirit of Peace" karya Dwiki Dharmawan, penonton digoyang dengan alunan arumba. Mereka yang sebenarnya lebih akrab dengan repertoire jazz di samping mezoued (musik lokal) ternyata dapat dengan gampang berinteraksi dengan musik-musik yang dibawakan. 

Dengan semangat mereka ikut berjoget di tribun saat orkestra membawakan lagu Sway, Kopi Dangdut, Sidi Mansour, Habibie Ya Nurul Ain, serta medley Poco-poco/Rindu/Ini Rindu, yang mengakhiri lebih dari satu jam pementasan tersebut.  Tepukan meriah dan standing ovation diberikan oleh semua yang hadir untuk penampilan malam itu. Direktur Festival International de Tabarka, Jamel Nasri, sangat terkesan dengan penampilan Saung Angklung Udjo dan berharap Indonesia akan kembali berpartisipasi dalam festival tersebut di edisi-edisi mendatang. 

Sementara itu Kepala Dinas Kebudayaan propinsi Jendouba Ahmed Syubbani, yang ikut hadir malam itu sangat kagum akan keapikan para musisi dalam mengaransir ulang lagu-lagu Arab untuk dimainkan dengan orkestra arumba. "Excellent," katanya.  Hanya saja dia menyayangkan waktu tampil yang hanya satu jam. "Penonton malam ini sangat antusias. Arumba adalah hal yang sangat unik bagi kami, dan kami ingin dapat lebih mengenal dan menikmatinya. Pentas satu jam ini terasa sebentar sekali," ungkapnya. 

Sementara Amel Yahyaoui yang mejadi MC malam itu menyatakan sangat terkesan dengan alat-alat dari bambu tersebut. "Otentique," katanya. Festival International de Tabarka adalah festival tertua di Tunisia, tahun ini memasuki edisi yang ke-48 merupakan event kultural yang cukup bergengsi, karena selalu digabungkan dengan Tabarka Jazz Festival yang sudah punya sudah reputasi mendunia.  Berbeda dari tahun-tahun sebelumnya, Tabarka Festival Jazz tahun ini hanya akan menampilkan empat hari edisi spesial Jazz yang akan dihost oleh Roy Ayers dan Stefano di Batista. Di tahun-tahun sebelumnya, Tabarka Jazz Festival selalu berlangsung selama tak kurang dari 10 hari.

Menurut Olfa Hermi, salah seorang organizer Festival, hal ini mengingat masuknya bulan Ramadhan yang bersamaan dengan regular Jazz season yang selalu jatuh di awal bulan Agustus. Pemusik jazz Indonesia seperti Gilang Ramadhan dan Grup Musik Krakatau juga sebenarnya telah pernah diundang untuk tampil di kota ini, namun belum dapat hadir. Tabarka adalah kota kecil berpenduduk sekitar 100,000, di kaki pegunungan yang terentang hingga ke pantai Mediterania, terletak di wilayah Barat Laut Tunisia, sekitar 175km dari kota Tunis dan 22km dari perbatasan Aljazair.Antara Wahyudi VOI News

How to Make Angklung

A. Select Bamboo Material for Angklung

The Angklung bamboo material used is a kind of:
1) Bamboo Temen / Awi Temen (Sunda)
• Bamboo Temen Black,
• Bamboo Temen White (Green).
2) Bamboo Wulung (Awi Wulung / Sunda) Black Bamboo,
3) Bamboo Lengka,
4) Bamboo Strap. (For Tube Tone)

To order materials (shelf) Angklung used:
1) Bamboo Letters / Surat Awi (Sunda)
2) Bamboo Gombong,
3) Bamboo strap.

B. Time Bamboo chop.

Of bamboo for Angklung usual in July - Okotober. Indonesia is in the dry season.
Bamboo and then stored in the warehouse storage space to dry the bamboo, + 1 year. So the dry bamboo is not be dry in the sun. To get the Angklung "tuneful voice" of the selected bamboo / bamboo chop is aged +3 years .

C. Manufacture Process / Development

• Once dry bamboo with the "wind”, chosen according to the size of allotment Angklung. Then cut, then formed.
• Store a few days / week in a special rack.
• Then the bamboo that has been formed Angklung (intonation tube) began set approaching the desired tone.
• After it is installed on the tube tone. Stored or swing for a few days / week.
• New set then again for then tied. Before post to place, set again.

Sunday, November 07, 2010


✎ : ABOUT ANGKLUNG
Angklung is an instrument made from joints of a piece of bamboo. The use of angklung is swayed and shaken by hand. This instrument has been known since a long time ago in some places in Indonesia, especially in West Java, Central Java, East Java, and Bali. The word “Angklung” was originated from Sundanese “angkleung-angkleungan”, that means the movement of angklung player and the sound “klung” that comes from the instrument.
✎ : FEATURES
iAngklung is an application Angklung music instrument. How to play it like playing a real angklung, by the shaking. In addition to the ways shaken, can also be played on the slide by using a finger, left and right.
✔ Real instrument with best quality sound
✔ All Sound sources are optimized for an iPhone/iPod touch speaker
✔ Play together with other iPod music
✔ Angklung Calculator on Settings Page
Programmer : Yulius Wibowo
Graphics and Music Designer : Dhany Irfan
Aplikasi ini bisa anda download di iTunes Store Pada Saat Pengukuhan Angklung Sebagai Warisan Dunia Pada Tanggal 18 November 2010 .

Pitch and timbre determination of the angklung


INTRODUCTION 

An angklung is a rattle like musical instrument that is made entirely from bamboo. The angklung sound is produced from an impact mechanism within its body structure without the use of any tensed strings or stretched membranes. Therefore, the angklung is classified as a percussion musical instrument of the group idiophone along with the xylophone and the gong. Figure 1 shows the front view of the angklung. 

[FIGURE 1 OMITTED] 

The angklung is generally supposed to originate from West Java. According to folklore, angklung was a musical instrument of agricultural festivals and was also used during the festivities to arouse the fighting spirits of soldiers. It was also associated in Java with hobby-horse dancing (1), (2). In the 1920s, it was used as children's toy and then in the 1930s, it was used by beggars to attract passers by. Daeng Sutigna of Bandung, a musician, then started to resurrect andpopularise the angklung. He introduced tunes similar to Western music, composed modern arrangements and recruited more angklung enthusiasts. Angklungs normally found nowadays are tuned to the Western diatonic scale which differs from the traditional pentatonic scale (3). 

Three species of bamboo have been reported to be used in angklung production. The first is the bambu tutul or Bambusa vulgaris Schrad. ex J.C. Wendl. var. maculata Widjaja. However, recently this type of bamboo is rarely used for the angklung. The second species is the bambu hitam or Gigantochloa aff. atter (Hassk.) Kurz ex Munro, which has a distinct leaf anatomy from the true G. atter or bambu temen. This second species is the most used for Sundanese bamboo musical instruments including the angklung. The third species is the bambu apus or Gigantochloa apus Bl. ex Schultes f., which is less favorable because its tubes are not straight and the nodes has little swellings that cause some disturbance in the sound it produces (3). 

The angklung's physical parameters and sound is analyzed in this research. Analyzing the angklung is important to recognize the main characteristics that make up the unique sound of the angklung. This will help to make the instrument more accessible and easily utilized in the modern digital music scene. This research will describe how the pitch of an angklung can be determined using physical measurements of the angklung. The length and diameter of the angklung rattle air column are used to calculate the angklung's pitch. This research will also examine the timbre of an angklung and determine the main characteristics that distinguish sound of the angklung from other instruments. 

MATERIALS AND METHODS 

Every component of an angklung may have its traditional name, but in this research, these components will be given a descriptive name. An angklung has two main parts, the frame and the rattle tubes as shown in Fig. 1. The frame's functions are to hold the rattle tubes and as a place for an angklung player to hold the angklung. 

The rattle tubes are the main sound generators for an angklung. The tubes are made from a segment of a bamboo with one of its ends still closed by its node. Part of the segment near the open end of the tube is removed forming the tongue of the rattle tube. A pair of small protuberances is left at the closed end of the tube which we will call tines. These rattle tubes are suspended vertically in the angklung frame. The tubes are suspended in such a way that the tines can slide easily and loosely inside slits made in the bottom frame tube. The bottom frame tube is also made from a bamboo segment but both its ends are open. Figure 2 shows the rattle tube of an angklung (4). 

[FIGURE 2 OMITTED] 

The angklung is played by holding the frame with one hand and shaking the bottom frame tube sideways with the other hand. This sideways motion will cause the rattle tubes to swing and the tines will strike the end of their respective slits. The angklung can also be played with the frame tilted sideways to shake it just once. Note that each angklung is made to produce just one musical note. Therefore, a whole ensemble of angklung players is needed to play any particular melody. Nevertheless, it is possible to play a melody with just a single player by using a device that holds multiple angklung and allows the player to play all of them by himself. 

Tuning of an angklung mainly depends on two measurements, the length of the air resonator and the length of the tongue of the rattle tubes. The air resonator acts like an amplifier in that it amplifies the frequency of sound that matches the natural frequency of the air vibrating inside the resonator. The length of the tongue determines the natural frequency of the whole rattle tube vibration. Generally, the longer the whole rattle tube, the lower the pitch of the generated sound. The rattle tube can be fine tuned by carving parts of the tongue. Sharpening or raising the pitch can be achieved by shortening the tongue at its end. Flattening or lowering the pitch can be done by carving away the part where the tongue and the air resonator meet, thus making the effective tongue length slightly longer. 

To determine the reference frequency values corresponding to an angklung pitch, a set is used consisting of eight angklungs with eight different pitches that make up a full octave without accident notes ranging from C5 to C6. This reseach uses the tempered scale for comparison purposes, with the A above the middle C being equal to 440.00 Hz and with C4 being the middle C. Table 1 gives the frequency for each corresponding angklung pitch in the set.
Table 1: Corresponding frequency values for C5-C6 using tempered scale

Pitch             Standard frequency (Hertz)

C5                               523.25
D5                               587.33
E5                               659.26
F5                               698.46
G5                               783.99
A5                               880.00
B5                               987.77
c6                              1046.50


This research uses the cents notation for subdividing the basic interval of the tempered scale. Cents is calculated using the relationship: with [cents] is cents, [f.sub.1] is the reference frequency and [f.sub.2] is the interested frequency value (5), (7). 

[f.sub.2]/[f.sub.1] = [cents]/1200 (1) 

Rattle modeling: The air resonator directly affects the sound of an angklung. When the tine of an angklung rattle hits the bottom frame tube, sound is introduced at the bottom of the air resonator. The sound wave will travel back and forth between the mouth and the bottom of the air resonator resonating at the air resonator fundamental frequency and odd harmonics. 

A closed cylindrical air resonator will produce resonant standing waves at the fundamental frequency and at odd harmonics. In the case of an angklung, the fundamental frequency is the pitch the angklung is tuned to. The fundamental frequency can be calculated as follows: 

f = nv/4(L + 0.305d), n = 1,3,5,... (2) 

where, f is the frequency in Hertz, n is the harmonic number, v is the speed of sound in air, L is the length of the air resonator and d is the diameter of the air resonator. Figure 3 shows the parameters associated with air resonance in a closed cylinder (7), 8). 

[FIGURE 3 OMITTED] 

An important method of processing and analyzing a sound signal is to look at the signal's frequency content. The Fast Fourier Transform (FFT) method can be used for this purpose. FFT is based on the complex Discrete Fourier Transform (DFT) equation 

Re X[K] = [N-1.summation over (i = 0)] x[I]cos(2[pi]ki/N) 

Re X[K] = [N-1.summation over (i = 0)] x[I]sin(2[pi]ki/N) 

with index k running from 0-N/2 where N is the number of sample (9), (12). 

Another way of examining the frequency content in a signal is to see how the frequency changes over time. The the short-time Fourier transform (STFT) can be used for this purpose. This method breaks the input signal into a sequence of brief segments with each segment multiplied by awindowing function. Smooth bell-shaped windowing functions are usually used to reduce distortion that occurs during windowing. FFT is then applied to each segment resulting in a series of frequency spectrum for every short time window of the input signal, hence the name short-time Fourier transform. The resulting transform is represented as a frequency over time figure called a spectrogram with colour intensity representing frequency magnitude. During the segmentation, the windows are chosen to overlap one another to capture the signals without gaps caused by the bell-shaped windows (9), (12),. All the angklung sound for analysis is sampled at a sampling frequency of 44100 Hz with 16 bit resolution. 

RESULTS AND DISCUSSION 

The fundamental frequency for the primary rattles of each angklung is calculated based on the calculation of air resonance in a closed cylinder. The results are given in the Table 2 with v = 340.29 m [sec.sub.-1].
Table 2: Calculated fundamental frequency for the primary rattles

                           Primary rattle
Angklung
pitch               L(mm)    d(mm)      [f.sub.1](Herz)

C5                   158      31               508.03
D5                   136      32               583.65
E5                   120      26               664.99
F5                   112      25               711.16
G5                    95      25               828.96
A5                    86      24               911.62
B5                    80      23               977.68
C6                    72      23              1076.66


Sound from the primary rattles of the angklungs are sampled and collected. The rattle is only allowed to strike once to capture the full length of the rattle sound. A rattle sound played this way would have a length of between 80ms to 140 ms. The rattle sound cannot reach its full length in a real angklung performance since the speed that the angklung is shaken will cause the rattle to strike again before its previous sound completely dies off. The samples are analyzed using FFT to determine the prominent frequency that can be chosen as the rattles' pitch. FFT is computed with a resolution of 65536 points using zero padding. The high resolution is possible because the samples are very short and data handling is manageable. 

Figure 4 shows the waveform of an gklung C5 primary rattle sample, to illustrate a typical result. The frequency spectrum shows that each primary rattle sample has a single prominent frequency, which we name [f.sub.primary]. Harmonics of that frequency are either very weak or non existent. Some inharmonic peaks are observed to be present in the spectrum. The most significant inharmonic partial is at 2.45 [f.sub.primary], which can sometimes have a higher magnitude than the [f.sub.primary], Nevertheless, that phenomenon is not common and the strength of the partials is usually like the one shown in Fig. 5. By plotting the spectrogram of the sound using STFT, we can see that [f.sub.primary], is persistent along the sample length as shown in Fig. 6. Therefore, we can take [f.sub.primary], as the rattle's pitch. 

[FIGURE 4 OMITTED] 

[FIGURE 5 OMITTED] 

Table 3 shows a comparison of [f.sub.primary] with the calculated fundamental resonance of each rattle of Table 2. The [f.sub.primary] is shown as a range of maximum and minimum of the collected samples. The variation is caused by the lack of a steady-state or a sustain period in the waveform, which can be seen in Fig. 4. Thus, the sound vibration cannot settle to a stable frequency before losing all of its energy. On average, the maximum difference between the calculated fundamental frequencies of air resonance with [f.sub.primary] is 46.75 cents.
Table 3: Comparison of [f.sub.primary] with fundamental
air resonance for each primary rattle

Angklung          [f.sub.primary(range)]   Calculated fundamental
Pitch                                      resonance

C5                   521.51-524.20          521.44-526.28
D5                   583.42-595.53          585.30-591.07
E5                   659.45-666.18          660.78-673.11
F5                   699.83-707.90          700.08-706.58
G5                   787.98-797.40          788.99-802.78
A5                   894.30-904.39          875.44-881.53
B5                  983.13-1000.20        1003.88-1011.44
C6                  061.18-1081.37        1046.50-1059.88


[FIGURE 6 OMITTED] 

Similar analysis is also conducted on the secondary rattle of each angklung. Table 4 and Fig. 7-9 are the results of the analysis. [f.sub.secondary] is the prominent frequency of the secondary rattles and is also classified as the pitch for each rattle. 

[FIGURE 7 OMITTED] 

[FIGURE 8 OMITTED] 

[FIGURE 9 OMITTED]
Table 4: Calculated fundamental frequencies for secondary rattles

                                     Secondary rattle

Angklung pitch               L(mm)   d(mm)      f sub.1](Hertz)

C5                            74      18          1070.23
D5                            64      20          1213.59
E5                            58      18          1339.94
F5                            53      19          1446.93
G5                            47      16          1639.79
A5                            42      16          1814.69
B5                            36      15          2096.67
C6                            34      14          2222.96


The results for the secondary rattle analysis are also similar with the results for the primary rattle. The main difference is that for every angklung, [f.sub.secondary] is almost equal to two times [f.sub.primary]. Note that the length of the secondary rattle samples is also shorter than the primary. 

Table 5 shows a comparison of [f.sub.primary] with the calculated fundamental resonance of Table 4. The average maximum difference between the calculated fundamental resonance and [f.sub.secondary] is 26.75 cents.
Table 5: Comparison of [f.sub.secondary] with fundamental
air resonance for each secondary rattle

Angklung                           Calculated fundamental
pitch       [f.sub.secondary]      resonance

C5        1068.59-1079.35                 1070.23
D5        1175.58-1193.07                 1213.59
E5        1337.75-1344.48                 1339.94
F5        1396.29-1413.12                 1446.93
G5        1587.40-1597.49                 1639.79
A5        1779.85-1781.20                 1814.69
B5        2011.34-2023.45                 2096.67
C6        2102.18-2116.98                 2222.96


Each angklung is sampled again but this time with both rattles playing. The coupling effects of the rattles gives a higher total amplitude on the sound output compared to playing the angklung with a single rattle. The coupling of the rattles also creates a sound output with a more irregular amplitude envelope such as shown in Fig. 10. This can be compared with Fig. 4 and 7. 

[FIGURE 10 OMITTED] 

[FIGURE 11 OMITTED] 

[FIGURE 12 OMITTED] 

Figure 11 and 12 show the FFT and spectrogram results for an angklung C5 played with combined rattles. Two main peaks are clearly seen with each corresponding to [f.sub.Primary] and [f.sub.secondary] for the particular angklung. The 2.45f partial mentioned earlier are also present in the spectrum but the partial for the primary rattle cannot be seen clearly because of its close proximity with [f.sub.secondary]. 

Table 6 shows the pitch of the angklung played with both rattles which is the normal playing mode. The pitch of the angklung played with combined rattles is equal to [f.sub.Primary]. Since [f.sub.secondary] is tuned to be twice [f.sub.Primary] [f.sub.secondary] has taken the role of becoming the second harmonic of [f.sub.Primary] in the combined rattle output sound. This has the effect of emphasizing [f.sub.Primary] as the pitch of the angklung. The timbre for an angklung is identified to have two frequency peaks, one being the pitch and the second is about the second harmonic of the first. This shows that the timbre of the angklung is a mix of its individual rattles. Thus, the partials of the respective rattle are also present in the angklung sound. There are also differences between playing the angklung with only one of its rattles than with playing the angklung with both rattles. The angklung sounds fuller and individual attacks during impact of the rattles are less noticeable when playing with both rattles.
Table 6: Pitch of the angklung played with both rattles

                                       Equivalent frequency
Intended pitch     Pitch of samples    (cents notation)

C5                    C5-6-C5+10         521.44-526.28
D5                    D5-6-D5+11         585.30-591.07
E5                    E5+4-E5+36         660.78-673.11
F5                    F5+4-F5+20         700.08-706.58
G5                   G5+11-G5+41         788.99-802.78
A5                     A5-9-A5+3         875.44-881.53
B5                   B5+28-B5+41       1003.88-1011.44
C6                    C6+0-C6+22       1046.50-1059.88


CONCLUSION 

The pitch and timbre of an angklung set have been determined in this research. The fundamental frequency of air resonance in each angklung rattle was calculated using the length and the diameter of the air column of the rattles. The calculated fundamental frequency of each angklung rattle was then compared with the pitch of the sound samples collected from the respective rattle. The comparison shows that the fundamental frequency of air resonance in the rattle can be used to estimate the pitch of an angklung with a tolerance of less then 60 cents with a few exceptions. The exceptions are caused by the natural shape of bamboo that differs from the effective length and diameter of the air column to that of an ideal open cylinder. The timbre of the angklung was also analysed and two main features can be observed. The first feature is that for every angklung with a rattle pair, the sound output will have two main peaks in the frequency spectrum with each peak corresponding to the pitch of each rattle. The second feature is that there are inharmonic partials for each of the peak mentioned, with the most obvious being 2.45 times respective of the peak frequency. 

REFERENCES 

(1.) Taylor, E., 1990. Musical instruments of SouthEast Asia. Oxford University Press, Singapura. 

(2.) Mohd, Ghouse Nasuruddin, 1992. The Malay Traditional Music. Dewan Bahasa Dan Pustaka, Kuala Lumpur. 

(3.) Widjaja, A. Elizabeth, 1980. The angklung and other West Javanese Bamboo musical instruments.In Bamboo Research in Asia: Proceedings of a Workshop Held in Singapore, 28-30 May 1980, Gilles Lessard and Amy Chouinard (Eds.). Ottawa: International Development Research Centre, pp: 201-204. 

(4.) Mohd Zainal, M.R., S. Abd Samad and A. Hussain, 2005. Sound analysis of angklung: A traditional musical instrument. Proceeding MMU International Sympousam on Information and Communications Technologies, Malaysia, 2005, TS04 pp: 9-12. 

(5.) Roederer, J.G., 1973. Introduction to the Physics and Psychophysics of Music. Springer Verlag, New York. 

(6.) Rigden, J.S., 1985. Physics and the Sound of Music. 2nd Edn. John Wiley and Sons. 

(7.) Berg, R.E. and D.G. Stork, 1995. The Physics of Sound. 2nd Edn. Prentice Hall, New Jersey. 

(8.) Rossing, T.D., F.R. Moore and P.A. Wheeler, 2002. The Science of Sound. 3rd Edn. Addison Wesley, San Francisco. 

(9.) Roads, C., 2000. The Computer Music Tutorial. The MIT Press, Massachusetts. 

(10.) Bremaud, P., 2001. Mathematical Principles of Signal Processing. Springer Verlag, New York. 

(11.) Zolzer, U., 1997. Digital Audio Signal Processing. John Wiley and Sons, England. 

(12.) Smith, S.W., 1999. The Scientist and Engineer's Guide to Digital Signal Processing. 2nd Edn. California Technical Publishing, California. 

Mohd Ridzuwary Mohd Zainal, Salina Abdul Samad, Aini Hussain and Che Husna Azhari Faculty of Engineering,University Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia 

Corresponding Author: Mohd Ridzuwary Mohd Zainal, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia Tel: +603-89216317 Fax: +603-89216146
COPYRIGHT 2009 Science Publications
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2009 Gale, Cengage Learning. All rights reserved.